解:
由积分区间[0,1],令x=sint,(t∈[0,π/2])
cost≥0
图形就是t从0到π/2的¼单位圆,你的疑问到这一步就可以解决。
∫[0:1]√(1-x²)dx
=∫[0:π/2]√(1-sin²t)d(sint)
=∫[0:π/2]costd(sint)
=∫[0:π/2]cos²tdt
=½∫[0:π/2][1+cos(2t)]dt
=½∫[0:π/2]dt+¼∫[0:π/2]cos(2t)d(2t)
=½t|[0:π/2]+¼sin(2t)|[0:π/2]
=½(π/2-0)+¼(sinπ-sin0)
=¼π+¼(0-0)
=¼π
计算的结果验证前面对图形的说法,就是¼单位圆
就是四分之一圆