形如an+an+1=f(n)的数列如何求通项公式?

2025-05-17 21:31:10
推荐回答(1个)
回答(1):

a(n) + a(n+1) = f(n),

a(2n-1) + a(2n) = f(2n-1),
a(2n) +a(2n+1) = f(2n).

f(2n) - f(2n-1) = a(2n+1) - a(2n-1),
a(2n+1) = a(2n-1) + f(2n-1) - f(2n).
b(n) = a(2n-1).g(n) = f(2n-1)-f(2n).
b(n+1) = b(n) + g(n).

a(2n+1) +a(2n+2) = f(2n+1).
f(2n+1)-f(2n) = a(2n+2)-a(2n),
a(2n+2) = a(2n) + f(2n+1) - f(2n).
c(n) = a(2n), h(n) = f(2n+1)-f(2n).

c(n+1) =  c(n) + h(n).

分别讨论 b(n) = a(2n-1), c(n) = a(2n)的通项公式。。来获得a(n)的通项公式。