已知数列{an}中,前n项和为Sn,a1=5,并且Sn+1=Sn+2an+2n+2(n∈N*),(1)求a2,a3的值;(2)设bn=an+

2025-05-19 09:12:16
推荐回答(1个)
回答(1):

(1)∵Sn+1=Sn+2an+2n+2(n∈N*),
∴Sn+1-Sn=2an+2n+2(n∈N*),
即an+1=2an+2n+2(n∈N*),
又∵Sn=2an+2n+2(n∈N*),
∴a2=2a1+23=10+8=18,
a3=2a2+24=36+16=52
(2)∵bn=

an
2n

∴b1=
a1
2 
=
5+λ
2 

b2=
a2
22
=
18+λ
4

b3=
a3
23
=
52+λ
8

∵数列{bn}为等差数列
∴2b2=b1+b3=2×
18+λ
4
=
5+λ
2 
+
52+λ
8

解得λ=0
(3)由(2)得bn=
an
2n

∴b1=
5
2 

b2=
9
2 

∴d=b2-b1=2,
即数列{bn}是公差d=2,首项为b1=
5
2 
的等差数列
∴bn=
an
2n
=
5
2 
+2(n-1)=
4n+1
2

∴an=2n-1?(4n+1)
an<(t?
n+1
2n?5
)?3n
对任何的n∈N*