f(x) = x^2
f(i/n) = (i/n)^2
∫(0->1) x^2 dx
=lim(n->∞) (1/n) ∑(i:1->n) f(i/n)
=lim(n->∞) (1/n) ∑(i:1->n) (i/n)^2
=lim(n->∞) (1/n^3) ∑(i:1->n) i^2
=lim(n->∞) (1/n^3) [(1/6)n(n+1)(2n+1)]
=(1/6) lim(n->∞) (n+1)(2n+1)/n^2
分子分母同时除以 n^2
=(1/6) lim(n->∞) (1+1/n)(2+1/n)
=(1/6)(1+0)(2+0)
=1/3