求救一道线性代数的题目,大侠们进来帮帮忙~~~

2025-05-13 17:44:08
推荐回答(1个)
回答(1):

设C=KE+A
先将C化为对角阵,计算C的特征值,得
C的特征值为k,k+2,k+2
因此C相似于D=(k,k+2,k+2)其中三个数都在对角线上
即存在可逆矩阵P使得C=P^(-1)DP,这里P可以求出,不再展开
B=C^2=P^(-1)(k^2,(k+2)^2,(k+2)^2)P
因此B与(k^2,(k+2)^2,(k+2)^2)相似,其中三个数都在对角线上
易知当k不等于0和-2时B为正定矩阵。