收
tanx=sinx/cosx,tan3x=sin3x/cos3x。sin3x=3sinx-4(sinx)^3,cosx=4(cosx)^3-cosx。当x趋向于π/2时,sinx=1,cosx=0。对于0/0或者无穷大/无穷大的类型,应先化简成可以取极限使得算式有意义。
则lim(x->π/2)(tanx/tan3x)=lim(x->π/2){[(sinx)*[4(cosx)^3-cosx]/[(cosx)*[3sinx-4(sinx)^3]]}=lim(x->π/2){{1/[3-4(sinx)^2]}*[4(cosx)^2]-3}=[1/(3-4)]*(0-3)=3
y=π/2-x
lim(x->π/2) tanx/tan3x
=lim(y->0) cotx/cot3x
=lim(y->0) tan3x/tanx
=lim(y->0) 3x/x
=3