解:
(1)f(x)=cosxsin(x+∏/3)-根号3cos^x+根号3/4
=cosx(sinxcosπ/3+cosxsinπ/3)-√3/2(1+cos2x)+√3/4
=1/2sinxcosx+√3/2cos²x-√3/2(1+cos2x)+√3/4
=1/4sin2x+√3/4(1+cos2x)-√3/2(1+cos2x)+√3/4
=1/4sin2x-√3/4cos2x-√3/2
=1/2(1/2sin2x-√3/2cos2x)-√3/2
=1/2sin(2x-π/3)-√3/2
f(x)最小正周期T=2π/2=π
(2)∵x∈[-π/4,π/4]
∴2x-π/3∈[-5π/6,π/6]
当2x-π/3=-π/2时,f(x)min=-1/2-√3/2
当2x-π/3=π/6时,f(x)min=1/4-√3/2
(1)f(x)=cosxsin(x+π/3)-√3cos²x+√3/4
=cosx(1/2sinx+√3/2cosx)-√3cos²x+√3/4
=1/4sin2x-√3/2cos²x+√3/4
=1/4sin2x-√3/4(cos2x+1)+√3/4
=1/4sin2x-√3/4cos2x
=1/2sin(2x-π/3)
最小正周期T=π
-π/2<2X-π/3<π/2,递增
-π/12
-π/12<π/4<5π/12, 最大值f(π/4) =1/4