已知等差数列{a n }的首项a 1 =20,前n项和记为S n ,满足S 10 =S 15 ,求n取何值时,S n 取得最大值,并

2025-05-13 18:13:40
推荐回答(1个)
回答(1):

∵a 1 =20,S 10 =S 15 ,∴ 10×20+
10×9
2
d=15×20+
15×14
2
d

解得 d=-
5
3
…(3分)数列为递减的数列
∴通项公式 a n =-
5
3
n+
65
3

∴a 13 =0…(6分)
即当n≤12时,a n >0,n≥14,a n <0
∴当n=12或n=13时,S n 取得最大值,最大值是S 12 =S 13 =130…(12分)