(Ⅰ)当a=1时,f(x)=x-lnx-1,f′(x)=1?
=1 x
,x?1 x
令f'(x)>0得x>1,则函数f(x)的单调增区间为(1,+∞),
令f'(x)<0得0<x<1,则函数f(x)的单调减区间为(0,1),
则函数f(x)的极小值为f(1)=0,无极大值.
(Ⅱ)依题意有:fmin(x)≥0,x∈[1,+∞)
f′(x)=a?
?a?1 x2
=1 x
=ax2?x?(a?1) x2
(ax+(a?1))(x?1) x2
=
,a(x+
)(x?1)a?1 a x2
①当
≤1即a≥1?a a
时,1 2
f'(x)≥0,x∈[1,+∞),
则f(x)在[1,+∞)单调递增,
则fmin(x)=f(1)=a+a-1-1=2a-2≥0,
解得:a≥1,
②当
>1即0<a<1?a a
时,1 2
函数f(x)在[1,
]单调递减,在[1?a a
,+∞)单调递增,1?a a
则fmin(x)=f(
)<f(1)=2a?2<?1<0,不合题意.1?a a
综上所述:正数a的取值范围是[1,+∞).