数学上指一动点移动于一个平面上,与平面上两个定点的距离的差始终为一定值时所成的轨迹叫做双曲线(hyperbola)。两个定点叫做双曲线的焦点(focus)。
●
双曲线的第二定义:
到定点的距离与到定直线的距离之比=e
,
e∈(1,+∞)
·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1
其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2a
·双曲线的参数方程为:
x=x+a·secθ
y=y+b·tanθ
(θ为参数)
·几何性质:
1、取值区域:x≥a,x≤-a
2、对称性:关于坐标轴和原点对称。
3、顶点:a(-a,0)
a’(a,0)
aa’叫做双曲线的实轴,长2a;
b(0,-b)
b’(0,b)
bb’叫做双曲线的虚轴,长2b。
4、渐近线:
y=±(b/a)x
5、离心率:
e=c/a
取值范围:(1,+∞]
6
双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率
1
设圆心为O;
设双曲线方程为
x^2/a^2
-
y^2/b^2=1;
a^2+b^2=c^2;
离心率e=c/a;
由题意知:
该圆过点(c,±b√(e^2
-1)
);
而且|a-c|=|y0|=|±b√(e^2
-1)|
→(a-c)^2=b^2·(e^2
-1);
→c^2
-2ac
+a^2
=
b^2·e^2
-b^2
→(c^2
+a^2
+b^2)=2ac
+b^2·e^2
即
2c^2
=2ac
+(c^2
-a^2)·e^2
两边同时除以a^2
得
2=2e
+(e^2
-1)·e^2
e^4
-e^2
+2e
-2
=0;
(e^4
-1)
-(e-1)^2
=0;
(e^2
+1)(e+1)(e-1)-(e-1)^2
=0;
(e-1)[e^3+e^2+e+1-(e-1)]=0;
(e-1)(e^3+e^2+2)=0;
e>0,∴e^3+e^2+2>0;
∴只能e=1.
离心率是1.
2
矩形的四个顶点到其中心(对角线交点)的距离相等;
则易知,无论折成什么角度,O到A,B,C,D四点的距离都是相等的;
等于半对角线长r=√(6^2
+8^2
)/2=5;
也就是说,过这四个顶点的球(即四面体的外接球)永远是以O为球心,以5为半径.
则球的表面积为
S=4π·r^2=100π.
3
将A,B两点的坐标代入式子
x^2/(a^2/2)+y^2/a^2
,
使其都大于1,
得:
1^2/(a^2/2)
+
2^2/a^2
>1→
a<√6;
2^2/(a^2/2)
+
3^2/a^2
>1→
a<√17.
所以,a<√17