高数,微分方程,

2025-05-15 00:02:30
推荐回答(2个)
回答(1):

∴(1)是微分方程(2)的解,但不是通解。

下面求xy'-y=xsinx的通解:

先求齐次方程 xy'-y=0的通解:

分离变量得:dy/y=dx/x;积分之得lny=lnx+lnc=lncx;

故齐次方程的通解为:y=cx;将c换成x的函数u,得y=ux.........①

取导数得:y'=u+u'x........②;将①②代入原方程得:x(u+u'x)-ux=xsinx;

化简得u'x²=xsinx;即u'=(sinx)/x;故u=∫[(sinx)/x)]dx;

代入①式即得原方程的通解为:y=x∫[(sinx)/x)]dx;或写成:

【此积分包含有任意的积分常数。但此积分不能表为有限形式,也就是积不出来。】

回答(2):

y=x∫(0,x)sint/t×dt
求导,代入即可:
y'=∫(0,x)sint/t×dt+x(sinx/x)=∫(0,x)sint/t×dt+sinx
代入:
xy'-y
=x∫(0,x)sint/t×dt+xsinx-∫(0,x)sint/t×dt=xsinx
是解。但是不是通解。把积分下限换成常数a,就是通解了。