(1)an+1=2an-n+1,∴an+1-(n+1)=2(an-n),∴
=2,
an+1-(n+1)
an-n
又a1-1=-2,∴数列{an-n}是以2为公比、以-2为首项的等比数列,
∴an-n=(-2)?2n-1=-2n,∴an=n-2n
(2)由(1)得:bn=
=an 2n
-1,∴Sn=b1+b2+…+bn=(n 2n
-1)+(1 2
-1)+…+(2 22
-1)=(n 2n
+1 2
+…+2 22
)-n,∴Sn+n=n 2n
+1 2
+…+2 22
,n 2n
令Tn=
+1 2
+2 22
+…+3 23
,则n 2n
Tn=1 2
+1 22
+…+2 23
+n-1 2n
,n 2n+1
两式相减得:
Tn=1 2
+1 2
+1 22
+…+1 23
-1 2n
=1-n 2n+1
-1 2n
n 2n+1
∴Tn=2-
,即Sn+n=2-n+2 2n
,∴n+2 2n
(Sn+n)=2.lim n→∞
(3)∵Sn+n-2bn=2-
-2(n+2 2n
-1)=4-n 2n
<43n+2 2n
令f(x)=
,则f′(x)=3x+2 2x
,[(3-(3x+2)ln2] 2x
当x≥1时,f′(x)=
≤[(3-(3x+2)ln2] 2x
=3-5ln2 2
ln1 2
<0,e3 32
∴f(x)在[1,+∞)单调递减,∴Sn+n-2bn单调递增,∴Sn+n-2bn≥S1+1-2b1=
,3 2
∴
≤Sn+n-2bn<4,∴若总存在正自然数n,使Sn+n-2bn<m成立,则m>3 2
.3 2