在数列{an}中,已知a1=-1,an+1=2an-n+1(n=1,2,3,…).(1)求数列{an}的通项公式;(2)令bn=an2n

2024-10-29 17:12:34
推荐回答(1个)
回答(1):

(1)an+1=2an-n+1,∴an+1-(n+1)=2(an-n),∴

an+1-(n+1)
an-n
=2,
又a1-1=-2,∴数列{an-n}是以2为公比、以-2为首项的等比数列,
∴an-n=(-2)?2n-1=-2n,∴an=n-2n
(2)由(1)得:bn=
an
2n
=
n
2n
-1
,∴Sn=b1+b2+…+bn=(
1
2
-1)+(
2
22
-1)+…+
(
n
2n
-1)=(
1
2
+
2
22
+…+
n
2n
)-n
,∴Sn+n=
1
2
+
2
22
+…+
n
2n

Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
,则
1
2
Tn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1

两式相减得:
1
2
Tn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1
=1-
1
2n
-
n
2n+1

Tn=2-
n+2
2n
,即Sn+n=2-
n+2
2n
,∴
lim
n→∞
(Sn+n)
=2.
(3)∵Sn+n-2bn=2-
n+2
2n
-2(
n
2n
-1)=4-
3n+2
2n
<4

f(x)=
3x+2
2x
,则f′(x)=
[(3-(3x+2)ln2]
2x

当x≥1时,f′(x)=
[(3-(3x+2)ln2]
2x
3-5ln2
2
=
1
2
ln
e3
32
<0

∴f(x)在[1,+∞)单调递减,∴Sn+n-2bn单调递增,∴Sn+n-2bnS1+1-2b1=
3
2

3
2
Sn+n-2bn<4
,∴若总存在正自然数n,使Sn+n-2bn<m成立,则m>
3
2