如图,在等腰RT△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足

2025-05-10 12:35:19
推荐回答(4个)
回答(1):

(1)
因为DE⊥AB
所以角FDB=45°
又BF平行AC
得到三角形DBF是等腰直角三角形
所以BD=BF
由AC=BC
所以三角形ACD和CBF全等
所以角CAD=角FCB
角CAD+角ADC=角FCB+角ADC=90°
得证
(2)
由于DBF是等腰直角三角形,BE垂直于DF
所以DE=EF
所以直角三角形ADE和AFE全等
AD=AF
上面得到AD=CF
所以AF=CF
三角形ACF为等腰三角形

回答(2):

1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,
BF=CD∠CBF=∠ACD=90°CB=AC

∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.(4分)
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF
(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,(8分)
∴CF=AF,
∴△ACF是等腰三角形

回答(3):

(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.(2分)
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,BF=CD∠CBF=∠ACD=90°CB=AC​,
∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.(4分)
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.(6分)

(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,(8分)
∴CF=AF,
∴△ACF是等腰三角形.(10分)

回答(4):

(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.(2分)
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,BF=CD∠CBF=∠ACD=90°CB=AC​,
∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.(4分)
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.(6分)

(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,(8分)
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.(10分)