(1)∵∠ACB=90°,
∴AC⊥CD.
∵AD平分∠BAC,DE⊥AB,
∴∠ADC=∠ADE,
∴AC=AE=16,
在Rt△ABC中,sin∠B=
=AC AB
,4 5
∴AB=20,
∴BC=
=
AB2?BC2
=12.
202?162
(2)∵AB=20,AE=16,
∴BE=4.
∵DE⊥AB,
∴∠DEB=90°.
∴∠DEB=∠ACB=90°.
又∵∠DBE=∠ABC,
∴△DBE∽△ABC,
∴
=DE AC
.BE BC
∴
=DE 16
.4 12
解得:DE=
,16 3
Rt△ADE中,tan∠ADE=
=AE DE
=3.16
16 3
∴tan∠ADE=3.