(1)数列{an}中,∵a1=
,an+1=1 2
,3an
an+3
∴a2=
=3×
1 2
+31 2
,3 7
a3=
=3×
3 7
+33 7
,3 8
a4=
=3×
3 8
+33 8
.3 9
由此猜想:an=
.3 n+5
证明:由an+1=
,知3an
an+3
=1 an+1
+1 an
,1 3
∴{
}是等差数列,1 an
∴
=1 an
+(n?1)×1 a1
=1 3
,n+5 3
∴an=
.3 n+5
(2)∵an=
,3 n+5
∴