A:(1)A与C碰撞后速度即变为0,而B将继续运动,受摩擦力作用,速度由v0减到0,
由动能定理::μmBgL=
mB
解得:L=0.40m
(2)A与C发生弹性碰撞后,速度大小仍为v0,方向相反,以A、B为研究对象,设A、B有共同的速度v,水平方向不受外力作用,系统动量守恒,设向左为正,有:
mBv0-mAv0=(mA+mB)v
得:v===1 m/s,方向水平向左
(3)第一次A与C碰后,A、B有共同的速度v,B在A上相对于A滑行L1,则
μmBgL1=
mA+
mB?(mA+mB)v2
解得:L1=0.40m
第二次A与C碰后至A、B有共同的速度v',B在A上相对于A滑行L2,则
mBv-mAv=(mA+mB)v'
μmBgL2=
mAv2+
mBv2?(mA+mB)v′2
由以上两式,可得L2=0.10m
设第三次A与C碰后,A、B仍有共同的速度v'',B在A上相对于A滑行L3,则
mBv'-mAv'=(mA+mB)v''
μmBgL3=
mAv′2+
mBv′2?(mA+mB)v′′2
由以上两式,可得:L3=0.025m
则 L1+L2+L3=0.525m>0.51m
即第三次碰后B可脱离A板
答:(1)若木板A足够长,A与C第一次碰撞后,A立即与C粘在一起,物块 B在木板A上滑行的距离L为0.4m;
(2)若木板足够长,A与C发生碰撞后弹回(碰撞时间极短,没有机械能损失),第一次碰撞后A、B具有共同运动的速度为1 m/s,方向水平向左;
(3)若木板A长为0.51m,且A与C每次碰撞均无机械能损失,A与C碰撞3次,B可脱离A.
B:(1)A与C碰撞后瞬间动量守恒,则有:
(mA+mC)v1=mAv0
解得:v1=m/s
最终ABC三者速度相等,根据动量守恒定律得:
(mA+mB+mC)v2=(mA+mB)v0
解得:v2=m/s
根据摩擦力产生的热量等于AB作用时动能的减小量,即有:
μmBgL=
(mA+mC)v12+mBv02-
(mA+vB+mC)v22
解得:L=m
(2)A与C发生弹性碰撞后,动量守恒,能量守恒,则有:
mAvA+mCvC=mAv0
mAvA2+mCvC2=mAv02
解得:vA=-m/s
vC=m/s
之后AB组成的系统动量守恒,设共同速度为v,则有:
mAvA+mBv0=(mA+mB)v
解得:v=m/s
根据摩擦力产生的热量等于AB作用时动能的减小量,即有:
μmBgL1=
mAvA2+mBv02-
(mA+vB )v 2
解得:
L1=m
(3)不能,因为碰后物块C的速度为m/s,木板和物块B的共同速度也是m/s,不会再碰撞.
答:(1)若木板足够长,A与C碰撞后立即粘在一起,物块B在木板A上滑行的距离L为m;
(2)若木板A足够长,A与C发生弹性碰撞(碰撞时间极短,没有机械能的损失),第一次碰撞后物块B在木板A上滑行的距离为m;
(3)木板A不能与物块C再次碰撞.