解:延长DC和AM交于E,
∵ABCD为平行四边形
∴AB∥CE
∴∠BAM=∠MEC,∠ABM=∠ECM,
∵M为BC的中点,
∴AM=ME,
∴△ABM≌△ECM,
∴AB=CD=CE,AM=EM=2,
∵N为边DC的中点,
∴NE=3NC=1.5AB 即AB=
NE,2 3
∵AN=1,AE=2AM=4,且∠MAN=60°
∴由余弦定理EN2=AE2+AN2-2AE*ANcos60°=16+1-2×4×
=13,1 2
∴EN=
,
13
∴AB=
.2
13
3
故答案为
.2
13
3