判断函数f(x)=x⼀x^2-1在区间(-1,1)上的单调性,并给出证明

2025-01-25 17:10:16
推荐回答(2个)
回答(1):

f(x)=x/(x^2-1)=1/2×[1/(x-1)+1/(x+1)]
函数y=1/x在(-∞,0)∪(0,+∞)内单调减少,所以1/(x-1),1/(x+1)在(-1,1)内单调减少,所以函数f(x)在(-1,1)内单调减少

回答(2):

设 -1f(x1)-f(x2)=x1/(x1^2-1)-x2/(x2^2-1)
=(x1x2^2-x1-x2x1^2+x2)/(x1^2-1)(x2^2-1)
=(x1x2+1)(x2-x1)/(x1^2-1)(x2^2-1)
因为-1所以x1*x2+1>0,x2-x1>0,x1^2-1<0,x2^2-1<0
所以f(x1)-f(x2)>0
函数f(x)在(-1,1)上单调递减。