(Ⅰ)连接AD,由于AB为直径,则∠ADB=90°,又EF⊥BA,∴∠EFA=∠ADB=90°;则A、D、E、F四点共圆,则∠AFD=∠AED=30°证明:(Ⅱ) 由A、D、E、F四点共圆,得BE?BD=BF?BA连接BC,由对顶角相等,则RT△AEF∽RT△ABC,则AE?AC=BA?AF从而BE?BD-AE?AC=BF?BA-BA?AF=AB(BF-AF)=AB2.即AB2=BE?BD-AE?AC成立