(Ⅰ)解:由bn=an-1得
an=bn+1代入2an=1+anan+1得2(bn+1)=1+(bn+1)(bn+1+1)
整理得bnbn+1+bn+1-bn=0
从而有
?1 bn+1
=11 bn
∴b1=a1-1=2-1=1
∴{
}是首项为1,公差为1的等差数列,1 bn
∴
=n即bn=1 bn
1 n
(Ⅱ)Tn+1>Tn
证明:∵Sn=1+
+1 2
+…+1 3
1 n
∴Tn=S2n-Sn=
+1 n+1
+…+1 n+2
1 2n
Tn+1=
+1 n+2
+…+1 n+3
+1 2n
+1 2n+1
1 2n+2
Tn+1?Tn=
+1 2n+1
?1 2n+2
1 n+1
>
+1 2n+2
?1 2n+2
=01 n+1
故Tn+1>Tn