已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,设数列{bn}的前n项和为Sn,令Tn=S2n-Sn.(Ⅰ)求

2025-05-13 14:32:05
推荐回答(1个)
回答(1):

(Ⅰ)解:由bn=an-1得
an=bn+1代入2an=1+anan+1得2(bn+1)=1+(bn+1)(bn+1+1)
整理得bnbn+1+bn+1-bn=0
从而有

1
bn+1
?
1
bn
=1
∴b1=a1-1=2-1=1
{
1
bn
}
是首项为1,公差为1的等差数列,
1
bn
=n即bn
1
n

(Ⅱ)Tn+1>Tn
证明:∵Sn=1+
1
2
+
1
3
+…+
1
n

∴Tn=S2n-Sn=
1
n+1
+
1
n+2
+…+
1
2n

Tn+1
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2

Tn+1?Tn
1
2n+1
+
1
2n+2
?
1
n+1

1
2n+2
+
1
2n+2
?
1
n+1
=0


故Tn+1>Tn