a>0 求证 √(a^2+1⼀a^2)-√2≥a+1⼀a -2

a>0 求证 √(a^2+1/a^2)-√2≥a+1/a -2
2025-05-12 11:16:19
推荐回答(1个)
回答(1):

不等式左边=[a+1/a-√(a^2+1/a^2)]*[[a+1/a+√(a^2+1/a^2)]]/[a+1/a+√(a^2+1/a^2)]
=[(a+1/a)^2-(a^2+1/a^2)]/[a+1/a+√(a^2+1/a^2)]
=2/[a+1/a+√(a^2+1/a^2)]
而显然a+1/a>=2,a^2+1/a^2>=2
所以上式<=2/(2+√2)=2-√2
当且仅当a=1时等号成立