(1)由2anan+1+an+1-an=0得
?1 an+1
=2(3分)1 an
∴数列{
}是首项为1 an
=1,公差为2的等差数列1 a1
∴
=1+2(n?1)=2n?1∴an=1 an
(7分)1 2n?1
(2)∵bn=anan+1=
=1 (2n?1) (2n+1)
( 1 2
?1 2n?1
)1 2n+1
∴{bn}的前n项和为:Sn=
[(1?1 2
)+(1 3
?1 3
)+…+(1 5
?1 2n?1
)]=1 2n+1
(1?1 2
)=1 2n+1
(13分)n 2n+1