请问:1⼀n(n+1)=1⼀n-1⼀(n+1)求前n项的和是1-1⼀(n+1),从1⼀n-1⼀(n+1)到1-1⼀(n+1),怎么算的?

2025-05-07 07:13:55
推荐回答(2个)
回答(1):

1/1*2+1/2*3+……+1/n(n+1)+……
=1-1/n+1/n(n+1)
=1+1/n-1/n-1/(n+1)
=1-1/(n+1),

你原题的算式写错了所以你看不懂

回答(2):

逐项相消得出的
1/1*2+1/2*3+……+1/n(n+1)

=1-1/2+1/2-1/3+1/3-1/4+。。。+1/n-1/1+n
=1-1/n+1