∵G为AF中点,∠ADC=90°,∴DG=AG= 1 2 AF,∴∠GAD=∠GDA,∴∠DGE=∠GAD+∠GDA=2∠GAD,∵矩形对边AD∥BC,∴∠GAD=∠AEB,∴∠DGE=2∠AEB,∵∠DEA=2∠AEB,∴∠DGE=∠DEG,∴DG=DE=4,由勾股定理得,CD= DE2?CE2 = 42?12 = 15 ,∵四边形ABCD是矩形,∴AB=CD= 15 .故选D.