解:依题意x=(y'')^2+1所以y''=±根号(x-1)两边积分 得y'=±(2/3)x^(3/2)两边积分 得y=±(4/15)x^(5/2)
解微分方程x=(y'')²+1解:y''=±√(x-1);故y'=±∫√(x-1)dx=±(2/3)(x-1)^(3/2)+C₁;∴y=±(2/3)∫(x-1)^(3/2)dx+C₁∫dx=±(4/15)(x-1)^(5/2)+C₁x+C₂.即该方程的通解为y=±(4/15)(x-1)^(5/2)+C₁x+C₂