1⼀(1+x)的不定积分是多少

2025-05-19 13:08:16
推荐回答(4个)
回答(1):

具体回答如图:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

扩展资料:

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和。

参考资料来源:百度百科——不定积分

回答(2):

1/(1+x)的不定积分是ln丨1+x丨+C。C为常数。

解答过程如下:

∫1/(1+x)dx

=∫1/(1+x)d(1+x)

=ln丨1+x丨+C

扩展资料:

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简单的利用求不定积分来处理。这里要注意不定积分与定积分之间的联系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不会存在,即不定积分一定不存在。

回答(3):

1/(1+x)的不定积分是ln丨1+x丨+C。C为常数。

解答过程如下:

∫1/(1+x)dx

=∫1/(1+x)d(1+x)

=ln丨1+x丨+C

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

回答(4):

不定积分结果不唯一求导验证应该能够提高凑微分的计算能力先写后问唉。∫1/(1+x)dx=ln|x+1|+C。