limx→0 (e^3x-e^2x-e^x+1)⼀(3√(1-x)(1+x)-1)等于多少啊

2025-05-21 18:07:21
推荐回答(4个)
回答(1):

原式=lim(x→0)[e^(3x)-e^(2x)-e^x+1]/(-x²/3)
=-3*lim(x→0)[3e^(3x)-2e^(2x)-e^x]/2x
=-3/2*lim(x→0)9e^(3x)-4e^(2x)-e^x
=-3/2*(1-1-1)
=3/2

回答(2):

原式=lim(x->0) {[e^(2x)-1]*(e^x-1)}/[(1-x^2)^(1/3)-1]
=lim(x->0) (2x*x)/[(-x^2)*(1/3)]
=-6

回答(3):

结果是-6。。。。。。。

回答(4):

原式=lim(x→0)[e^(3x)-e^(2x)-e^x+1]/(-x²/3)
=-3*lim(x→0)[3e^(3x)-2e^(2x)-e^x]/2x
=-3/2*lim(x→0)9e^(3x)-4e^(2x)-e^x
=-3/2*(9-4-1)
=-6