如果可以用排序不等式证明的话x^2+y^2+z^2>=x^1.5y^0.5+y^1.5z^0.5+z^1.5x^0.5=2xxy/2(xy)^0.5+2yyz/2(yz)^0.5+2zzx/2(zx)^0.5<=2xxy/(x+y)+2yyz/(y+z)+2zzx/(z+x) (1)xx+yy+zz>=xy+yz+zx (2)(1)(2)相加,将(1)的右边移到左边,然后两边同时除以2即得到结论