已知xyz=1求(x⼀xy+x+1)+(y⼀yz+y+1)+(z⼀zx+z+1)的值

2025-05-18 10:08:23
推荐回答(1个)
回答(1):

x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)
=x/(xy+x+xyz)+y/(yz+y+1)+z/(zx+z+1)
=1/(yz+y+1)+y/(yz+y+1)+z/(zx+z+1)
=(1+y)/(yz+y+1)+z/(zx+z+1)
=(xyz+y)/(yz+y+xyz)+z/(zx+z+1)
=(xz+1)/(zx+z+1)+z/(zx+z+1)
=(zx+z+1)/(zx+z+1)
=1