解:
y=x+1/(x-1)
=(x^2-x+1)/(x-1)
={(x-1)^2+(x-1)+2}/(x-1)
=(x-1)+2/(x-1)+1
令:x-1=t>0,则:
y=t+1/t+1
由均值不等式可得:y>=2sqrt(2)+1,当且仅当t=1/t,即:t=1(t=-1<0,舍去)时成立,
此时y(min)=2sqrt(2)+1,x=2
如果有误,请指正!
谢谢!
f(x)=x+1/x-1>=2-1=1(x>=1),
当x=1时它取最小值1.
解:
y=x+1/(x-1)
=(x^2-x+1)/(x-1)
={(x-1)^2+(x-1)+2}/(x-1)
=(x-1)+2/(x-1)+1
令:x-1=t>0,则:
y=t+1/t+1
由均值不等式可得:y>=2sqrt(2)+1,当且仅当t=1/t,即:t=1(t=-1<0,舍去)时成立,
此时y(min)=2sqrt(2)+1,x=2
如果有误,请指正!
谢谢!