证明:连接OC,BC,AC,∵DC切⊙O于C,∴OC⊥CD,∴∠D+∠COD=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∵∠AEC=∠B,∴∠CAB+∠AEC=90°,∵ CE = BE ,∴∠COE=∠CAB,∴∠AEC+∠COE=90°,∴∠AEC=∠D.