1/(x-1)(x-2)=[(x-1)-(x-2)]/(x-1)(x-2)=(x-1)/(x-1)(x-2)-(x-2)/(x-1)(x-2)=1/(x-2)-1/(x-1)
其余类同
∴1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4)+......1/(x-2008)(x-2009)
=1/(x-2)-1/(x-1)+1/(x-3)-1/(x-2)+1/(x-4)-1/(x-3)+……+1/(x-2009)-1/(2008)
观察1、4项,3、6项、5、8项……可相互抵消
=1/(x-2009)-1/(x-1)
=[(x-1)-(x-2009)]/(x-1)(x-2009)
=2008/(x²-2010x+2009)
1/[(x-1)(x-2)]+1/[(x-2)(x-3)]+1/[(x-3)(x-4)]+......1/[(x-2008)(x-2009)]
=-[1/(x-1)-1/(x-2)]-[1/(x-2)-1/(x-3)]-[1/(x-3)-1/(x-4)]-……-[1/(x-2008)-1/(x-2009)]
=-1/(x-1)+1/(x-2)-1/(x-2)+1/(x-3)-1/(x-3)+1/(x-4)-……-1/(x-2008)+1/(x-2009)
=-1/(x-1)+1/(x-2009)
=-(x-2009)/[(x-1)(x-2009)]+(x-1)/[(x-1)(x-2009)]
=[-(x-2009)+(x-1)]/[(x-1)(x-2009)]
=2008/[(x-1)(x-2009)]
∵1/n-1/(n+1)
=1/[n(n-1)]
1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4)+......1/(x-2008)(x-2009)
=1/(x-2)-1/(x-1)+1/(x-3)-1/(x-2)+1/(x-4)-1/(x-3)+……+1/(x-2009)-1/(x-2008)
=1/(x-2009)-1/(x-1)=2008/(x-1)(x-2009)
原式=[1/(x-2)-1/(x-1)]+[1/(x-3)-1/(x-2)]+...........+[1/(x-2009)-1/(x-2008)]
=1/(x-2009)-1/(x-1)=2008/[(x-1)(x-2009)