还差一个负号,答案是(- 2/3)(arctan(1/x))^(3/2) + C
还有你那步x = tan(t²)做错了。应该是1/x = tan(t²),所以x应该等于cot(t²)
令t = √(arctan(1/x)),t² = arctan(1/x),1/x = tan(t²),x = cot(t²),dx = - csc²(t²) * 2t dt
∫ √(arctan(1/x))/(1 + x²) dx
= ∫ t/(1 + cot²(t²)) * (- csc²(t²) * 2t dt)
= - 2∫ t²/csc²(t²) * csc²(t²) dt
= - 2∫ t² dt
= (- 2/3)t³ + C
= (- 2/3)(arctan(1/x))^(3/2) + C