已知函数F(x)=lnx-ax-a?1x+1.(1)若曲线y=F(x)在点(2,F(2))处的切线垂直于y轴,求实数a的值;

2025-05-17 15:50:00
推荐回答(1个)
回答(1):

(1)由题意得F′(x)=

1
x
-a+
a?1
x2

∴F′(2)=
1
2
-a+
a?1
4
=0?a=
1
3

(2)由(1)得F′(x)=
?(x?1)(ax+a?1)
x2

①当0<a<
1
2
时,
1?a
a
=
1
a
-1>1,
故x∈(0,1)时F′x)<0,
x∈(1,
1
a
-1)时,F′(x)>0,
x∈(
1
a
-1,+∞)时,F′(x)<0,
即F(x)在(0,1)上递减,在(1,
1
a
-1)上递增,在(
1
a
-1,+∞)上递减;
②a=
1
2
时,F′(x)=
?(x?1)2
2x2
≤0,(当且仅当x=1时等号成立),
故F(x)在(0,+∞)上递减,
综上:当0<a<
1
2
时F(x)在(0,1)上递减,在(1,
1
a
-1)上递增,在(
1
a
-1,+∞)上递减;
a=
1
2
时,F(x)在(0,+∞)上递减;
(3)由题意
F(x1)?F(x2)
x1?x2
>-a-1,?x1≠x2,x1,x2∈[1,2]恒成立,
不妨设x1>x2,则
F(x1)?F(x2)
x1?x2
>-a-1?F(x1 )-F(x2 )>-(a+1)x1+(a+1)x2
即F(x1 )+(a+1)x1>F(x2 )+(a+1)x2,函数y=F(x)+(a+1)x在[1,2]上递增,
∴y′=