1×2+2×3+3×4...+19×20+20×21
=1×2+2×3+3×4...+n×(n+1) 其中 n=20
=(1^2+1)+(2^2+2)+(3^2+3)...+(n^2+n)
=(1+2^2+...+ n^2)+(1+2+...+n)
=n(n+1)(2n+1)/6+(1+n)n/2 代入n=20
=20×21×41/6+21×20/2
=3080
都是整数相加..,怎么可能出分数
1×2=(1×2×3-0×1×2)÷3
2×3=(2×3×4-1×2×3)÷3
...
20×21=(20×21×22-19×20×21)÷3
原式=(1×2×3-0×1×2+2×3×4-1×2×3+...+20×21×22-19×20×21)÷3
=20×21×22÷3
=3080