(1)∵等差数列{an}的前n项和Sn,公差d≠0,
且a3+S5=42,a1,a4,a13成等比数列,
∴
,
a1+2d+5a1+
d=425×4 2 (a1+3d)2=a1(a1+12d) d≠0
解得a1=3,d=2,
∴an=3+(n-1)×2=2n+1.
(2)∵{
}是首项为1,公比为3的等比数列,bn an
∴
=3n-1,即bn=(2n+1)?3n-1,bn 2n+1
∴Tn=3?30+5?3+7?32+…+(2n+1)?3n-1,①
3Tn=3?3+5?32+7?33+…+(2n+1)?3n,②
①-②,得:-2Tn=3+2(3+32+…+3n-1)-(2n+1)?3n
=3+2×
-(2n+1)?3n3(1?3n?1) 1?3
=3-3+3n-1-(2n+1)?3n
=3n-1-(2n+1)?3n,
∴Tn=
?3n-2n+1 2
.3n?1 2