已知等差数列{an}的前n项和Sn,公差d≠0,且a3+S5=42,a1,a4,a13成等比数列.(1)求数列{an}的通项公

2025-03-12 00:08:27
推荐回答(1个)
回答(1):

(1)∵等差数列{an}的前n项和Sn,公差d≠0,
且a3+S5=42,a1,a4,a13成等比数列,

a1+2d+5a1+
5×4
2
d=42
(a1+3d)2a1(a1+12d)
d≠0

解得a1=3,d=2,
∴an=3+(n-1)×2=2n+1.
(2)∵{
bn
an
}是首项为1,公比为3的等比数列,
bn
2n+1
=3n-1,即bn=(2n+1)?3n-1
∴Tn=3?30+5?3+7?32+…+(2n+1)?3n-1,①
3Tn=3?3+5?32+7?33+…+(2n+1)?3n,②
①-②,得:-2Tn=3+2(3+32+…+3n-1)-(2n+1)?3n
=3+2×
3(1?3n?1)
1?3
-(2n+1)?3n
=3-3+3n-1-(2n+1)?3n
=3n-1-(2n+1)?3n
∴Tn=
2n+1
2
?3n
-
3n?1
2