深度学习就是企图把中间的这个“黑箱”打开:目标是什么?根据什么确定了这样的目标?为了达到这个目标我要设计什么样的活动?
01
深度学习的必要性
改革开放40年,基础教育研究与实践的最大成就之一,就是树立了“学生是教育主体”的观念。但是,在课堂教学中,学生并未真正成为主体,大多数课堂教学也没有发生根本变化。为什么?因为大多数教学改革尚未抓住教学的根本,对课堂教学的研究还只停留在文本上、观念上,没有落到实际行动中。开展深度学习的研究与实践正是把握教学本质的一种积极努力,是我国课程教学改革走向深入的必需。
当前,智能机器尤其是智能化穿戴设备的大量出现,部分传统职业已被替代,甚至有人认为教师和教学也可能被替代而消失。在这样的情形下,我们不得不思考:在智能化时代,真的不需要教学了吗?真的不需要教师了吗?如果把教学仅仅看作是知识的刻板传递的话,那么,智能技术完全可以胜任,教学和教师完全可以被智能机器替代了。借用马云(阿里巴巴集团创始人)的话说,在一个把机器变成人的社会,如果教学还在把人变成机器,是没有出路的。
蒂姆·库克(苹果公司现任CEO)说:“我不担心机器会像人一样思考,我担心的是人会像机器一样思考。”正是由于智能机器的出现和挑战,我们必须严肃思考:教学究竟应该是怎么样的?教学存在的意义和价值究竟是什么?
事实上,教学的价值和意义一直都是培养人,但智能时代让它的意义和价值更加鲜明,不能再被忽视。因此,当机器已不只以存储为功能,而开始像人一样思考的时候,我们清醒地意识到:教学绝不是知识传递,甚至知识学习本身也只是培养人的手段,教学的最终目的是实现学生的全面发展。因此,帮助学生通过知识学习、在知识学习中形成核心素养,在知识学习中成长和发展,成为教学的首要任务。
02
深度学习的内涵
什么是深度学习?可以从两个层面来理解。
一个是初级层面,是针对教学实践领域的弊端提出来的,是针砭时弊的一种提法。深度学习是针对实践中存在大量的机械学习、死记硬背、知其然而不知其所以然的浅层学习现象而提出的。这里的“深度”是指学生的深度学习。我们并不强求教师必须采用某种固定的模式或方法,而是强调,教师要用恰当的方法去引发、促进、提升学生的深度学习。在这个意义上,深度学习是浅层学习的反面,是针砭时弊的。
但是,深度学习绝不只停留于这个层面。深度学习还有另一层面的理解,即高级的层面:深度学习并不只是为了促进学生高级认知和高阶思维,而是指向立德树人,指向发展核心素养,指向培养全面发展的人。因此,深度学习强调动心用情,强调与人的价值观培养联系在一起。
每个教师都应该想:我今天的教学会给学生造成什么样的影响?能够让他有善良、正直的品性吗?会让他热爱学习吗?会影响他对未来的积极期待吗?……总之,深度学习的目的是要培养能够“百尺竿头更进一步”、能够创造美好生活的人,是生活在社会历史进行中的、具体的人,而非抽象意义上的有高级认知和高阶思维的偶然个体。
综上,我们所说的深度学习,必须满足以下四个要点:
▲ 深度学习是指教学中学生的学习而非一般意义上学习者的自学,因而特别强调教师的重要作用,强调教师对学生学习的引导和帮助。
▲ 深度学习的内容是有挑战性的人类已有认识成果。也就是说,需要深度加工、深度学习的内容一定是具有挑战性的内容,通常是那些构成一门学科基本结构的基本概念和基本原理,而事实性的、技能性的知识通常并不需要深度学习。在这个意义上,深度学习的过程也是帮助学生判断和建构学科基本结构的过程。
▲ 深度学习是学生感知觉、思维、情感、意志、价值观全面参与、全身心投入的活动,是作为学习活动主体的社会活动,而非抽象个体的心理活动。
▲ 深度学习的目的指向具体的、社会的人的全面发展,是形成学生核心素养的基本途径。
根据这四个要点,我们给深度学习下了一个界定:“所谓深度学习,就是指在教师引领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程。在这个过程中,学生掌握学科的核心知识,理解学习的过程,把握学科的本质及思想方法,形成积极的内在学习动机、高级的社会性情感、积极的态度、正确的价值观,成为既具独立性、批判性、创造性又有合作精神、基础扎实的优秀的学习者,成为未来社会历史实践的主人”。
03
课堂教学如何实现深度学习?
1
实现经验与知识的相互转化
“经验”与“知识”常被看作是彼此对立的一对概念,事实上却有着紧密关联。深度学习倡导通过“联想与结构”的活动将二者进行关联、转化。简单来说,“联想与结构”是指学生通过联想,回想已有的经验,使当前学习内容与已有的经验建立内在关联,并实现结构化;而结构化了的知识(与经验)在下一个学习活动中才能被联想、调用。在这个意义上,“联想与结构”所要处理的正是知识与经验的相互转化,即经验支持知识的学习,知识学习要结构化、内化为个人的经验。也就是说,学生个体经验与人类历史知识不是对立、矛盾的,而是相互关联的,教师要找到它们的关联处、契合处,通过引导学生主动“联想与结构”的活动,让学生的经验凸显意义,让外在于学生的知识与学生建立起生命联系,使经验与知识相互滋养,成为学生自觉发展的营养。
2
让学生成为真正的教学主体
究竟如何才能让学生真正成为教学主体呢?我们提出了“两次倒转”的学习机制。为什么要提“两次倒转”?因为,相对于人类最初发现知识的过程而言,从根本上说,教学是一个“倒过来”的活动,即学生不必经历实践探索和试误的过程,而可以直接把人类已有的认识成果作为认识对象、学习内容,这正是人类能够持续进步的根本原因,是人类的伟大创举。但是,如果把教学的根本性质(即“倒过来”)作为教学过程本身,那就可能造成教学中的灌输,强调反复记忆和“刷题”,无视学生与知识的心理距离和能力水平,致使学生产生厌学情绪。因此,在强调教学的根本性质是“倒过来”的基础上,要关注学生的能力水平、心理感受,要将“倒过来”的过程重新“倒回去”,即:通过教师的引导和帮助,学生能够主动去“经历”知识发现、发展(当然不是真正地经历,而是模拟地、简约地去经历)的过程。在这个过程中,知识真正成为学生能够观察、思考、探索、操作的对象,成为学生活动的客体,学生成为了教学的主体。
3
帮助学生通过深度加工把握知识本质
学生活动与体验的任务,主要不是把握那些无内在关联的碎片性的、事实性的信息,而是要把握有内在关联的原理性知识,把握人类历史实践的精华。因此,学生的学习主要不是记忆大量的事实,而是要通过主动活动去把握知识的本质。知识的本质需要通过典型的变式来把握,即通过典型的深度活动来加工学习对象,从变式中把握本质。同样,一旦把握了知识的本质便能够辨别所有的变式,举一反三、闻一知十。“一”就是本质、本原、原理,基本概念。当然,本质与变式需要学生对学习对象进行深度加工,这是深度学习要特别重视的地方。
4
在教学活动中模拟社会实践
一般而言,学生是否能把所学知识应用到别的情境中是验证教学效果的常用手段,即学生能否迁移、能否应用。深度学习也强调迁移和应用,但我们不仅强调学生能把知识应用到新的情境中,更强调迁移与应用的教育价值。我们把“迁移与应用”看作学生在学校阶段,即在学生正式进入社会历史实践过程之前,能够在教学情境中模拟体会社会实践的“真实过程”,形成积极的情感态度价值观,因而我们强调“迁移与应用”的综合教育价值,既综合运用知识又实现综合育人的价值,而不仅仅是某个学科知识简单的迁移。它比一般的“迁移与应用”更广阔一些,学生跟社会的联系更强一些。
5
引导学生对知识的发展过程进行价值评价
教学要引导学生对自己所学的知识及知识发现、发展的过程进行价值评价。例如,食物的保鲜与防腐。过去学这个知识,学生通常要掌握“食物是会腐烂的,想让食物保鲜就要加防腐剂”这个知识点,甚至初步掌握防腐技术。但那仅仅是作为一个知识点、一个技能来掌握的。深度学习要让学生讨论,是不是所有的食品都可以用防腐剂来保鲜?是不是防腐剂用得越多越好?这就是一种价值伦理的判断。深度学习不仅仅是学知识,还要让学生在学习知识的过程中对所学的知识进行价值判断。不仅仅是对知识本身,还要对知识发现、发展的过程以及学习知识的过程本身进行价值判断。
04
深度学习的实践模型
图1是深度学习的实践模型。它不是知识单元、内容单元,而是学习单元,是学生学习活动的基本单位。
过去我们的教学知道要学什么,也知道要考什么,但中间的环节,例如学习目标是怎么定的,活动是怎么展开的,我们明确知道的东西很少,所以教学中间的两个环节是“黑箱”。深度学习就是企图把中间的这个“黑箱”打开:目标是什么?根据什么确定了这样的目标?为了达到这个目标我要设计什么样的活动?图1中的箭头看起来像是单向的,实际上应该有无数条线条,表现不断循环往复的过程。
图1中的四个形式要素跟前面讲的理论框架是内在一致的,单元学习主题实际上就是“联想与结构”的结构化的部分。单元学习目标,就是要把握知识的本质。单元学习活动是活动与体验、迁移与应用的一个部分。因此,单元学习主题,就是从“知识单元”到“学习单元”,立足学生的学习与发展,以大概念的方式组织“学习”单元,在学科逻辑中体现较为丰富、立体的活动性和开放性。过去的学科通常都是封闭的,现在要把它变成一个开放的、未完成的东西,有了未完成性和开放性,为学生提供探究的空间,有重新发现的空间。
单元学习目标是从学生的成长、发展来确定和表述;要体现学科育人价值,彰显学科核心素养及其水平进阶。
单元学习活动要注重几个特性。首先是规划性和整体性(整体设计),体现着深度学习强调整体把握的特点。其次是实践性和多样性,这里强调的是学生主动活动的多样性。再次是综合性和开放性,即知识的综合运用、开放性探索。最后是逻辑性和群体性,主要指学科的逻辑线索以及学生之间的合作互助。
持续性评价的目的在于了解学生学习目标达成情况、调控学习过程、为教学改进服务。持续性评价形式多样,主要为形成性评价,是学生学习的重要激励手段。实施持续性评价要预先制定详细的评价方案。
总之,对深度学习的研究,是一个对教学规律持续不断的、开放的研究过程,是对以往一切优秀教学实践的总结、提炼、提升和再命名,需要更多的教师和学者共同的努力和探索。
深度学习的课程可以在哪看到?怎么入门机器/深度学习?
回答这个问题,最先要考虑的问题是:你有多少时间?
准备用三个月入门,和想要一个月速成,肯定是截然不同的路径。当然我建议大家稳扎稳打,至少可以拿出五个月的时间来学好机器学习的基础知识。
基础很重要,知其所以然很重要。毕竟工具总在进步,每个月都会出现更好的深度学习技术,但基础知识是不变的。
如何用五个月时间入门?下面分三个部分,详细指南。(以及,如果你确实时间有限,最后还有一个速成指南)
五个月入门
Part 1:从机器学习开始(两个月)
最好的入门教程,就是吴恩达讲授的机器学习。吴恩达这套课程发布很久了,虽然有些地方稍微过时,但相信我,现在没有任何公开的课程,能比吴恩达讲得更好。真的,课程结束时我几乎哭了出来。
这个课程可以说适合任何水平的学生,当然,你最好还是得知道两个矩阵如何相乘,以及对编程有一些基本的了解。
这套课程可以前往Coursera学习,传送门:
coursera.org/learn/mach
也可以上网易公开课收看,传送门:
open.163.com/special/op
如果你有时间,一定要听完全部的课程。如果时间紧张,至少要听完前五节课程,后面的可以暂时跳过。
吴恩达的机器学习课程深入讲解了经典的机器学习模型,如线性回归、逻辑回归、神经网络、支持向量机、PCA、无监督学习等等。大部分重要概念,都以简单易懂的方式进行了介绍。
课程延伸
当你学习到第五节课,也就是开始讲述神经网络时,建议开始查看与课程平行的外部资料。比方3bule1brown推出的神经网络讲解视频。推荐必看。
YouTube传送门:
youtu.be/aircAruvnKk?
或者可以前往B站查看:
space.bilibili.com/8846
以及,我觉得吴恩达在讲神经网络时有点快,所以建议补充阅读一些资料。比如有关神经网络和深度学习的在线书籍,免费的就很好了。
传送门:
neuralnetworksanddeeplearning.com
作者Michael A. Nielsen以一种简单直观的方式,深入探究了神经网络的每个细节。建议阅读这本书的前两章,与吴恩达的课程并行。当你熟悉更多概念后,开始搞深度学习时,可以再看书中的其余部分。
如果你英文不好,这本《神经网络与深度学习》也有中文翻译版本,可以免费在线查看。
传送门在此:
tigerneil.gitbooks.io/n
这个部分的学习结束之后,你就能明白机器/深度学习的许多概念。最后推荐阅读Christopher Olah的博客,很有意思。
传送门:colah.github.io/
Part 2:涉足深度学习(1个月)
开始研究深度学习之前,最好重温一下大学数学。Ian Goodfellow传奇般的“花书”《深度学习》,简明扼要的概括了大部分重要主题。
建议大家尽可能深入地阅读线性代数、概率、信息理论的章节。每当读论文遇到深度学习概念时,都可以在书中找到参考。
以及,这本书有在线的版本。
例如英文版在此:
github.com/janishar/mit 。
而中文翻译版本在此:
github.com/exacity/deep
关于深度学习的在线资料有很多,你可能会挑花了眼。
再一次,我觉得最好的选择,还是听吴恩达的《深度学习专项系列课程(Deep Learning Specialization)》。
Coursera传送门:
coursera.org/specializa
网易云课堂的传送门:
mooc.study.163.com/smar
这门课程包括五大章节。其实不是免费的,你可以按照50美元/月购买。当然,如果你负担不起,还能申请“助学金”。申请时请详细阐明理由,处理的时间大概需要15天左右。
当然不付费,大部分内容都是可以看的。以及视频的部分,在很多地方也能免费收看。
这五门课程主要讲的是:
1、神经网络和深度学习(4周)
2、改善深度神经网络(3周)
3、结构化机器学习项目(2周)
4、卷积神经网络(4周)
5、序列模型(3周)
余秋雨先生说,在闲暇时,不管你在码头、在田间、地头,当你静静的读一本书的时候,你的格调将从此不同!
首先,深度学习要来自于你生命深度的自觉!你自觉想学,什么地点,什么时候都不是问题,毛主席在喧闹街市,依然可以旁若无人的学习;渴望考研成功的人,在昏暗的宿舍楼楼梯拐角处,依然可以学习!
其次,深度的学习,来自你生命深处浓厚的兴趣!
大家可能看见过报道,农民工爬在地上,依然在心无旁骛的临摹着王义之、兰亭序,只要是你的生命深处的兴趣,在哪里都可以学习!
第三,现在公园,图书馆,博物馆,朗诵者协会,会馆,都是不错的深度学习的地方!
第四,即使没这些条件,拿起手机,打开今日头条,搜索你想学习的内容和教程,一切都会找到,也可以静静的躺在床上学习几小时了现在AI课程已经很普及了,绝大部分都能在网上找到开源免费的视频课程,当然也可以
知乎,CSDN,简书等等网站学习。目前我也在整理基于opencv的教程,是完全从零开始的指导,发布在头条里,如果有兴趣,也可以关注下我发的文章,希望能有所帮助
2018 年秋季,吴恩达教授在斯坦福新开了一门 CS230《深度学习》课程,近期,该课程的视频已经上传到网络上,AI科技大本营必须要把这份新鲜出炉的学习课程分享给大家,营长敲黑板啦:”是谁的小眼睛还没看过来“?
还记得当年大家入门 AI 的时候都必看的一个视频就是 Andrew Ng 在斯坦福大学的《机器学习》课程,也是这门课让那个时候的我们,乃至全世界的小伙伴们,都有机会免费学习到经典又精品的 AI 课程。
吴恩达最新斯坦福课程《深度学习》全部视频大放送
2018 年秋季,吴恩达教授在斯坦福又新开了一门 CS230《Deep Learning》课程,和 Prof. Andrew Ng 一起共同讲授这门课程的还有 Prof. Kian Katanforoosh。近日,这门课程的全部视频已正式上线,国内微博博主爱可可老师将视频从油管搬运到了 B 站(感谢爱可可老师),不能翻墙已经不是你不学习的理由了!
将围绕深度学习的基础,理解如何构建的神经网络,并且学习到如何成功的完成一个机器学习项目等内容展开。涉及的知识点包含:CNN、RNNs、LSTM、Adam、Dropout、BatchNorm 等等。
也许你会问,这么多内容就五课时?这次的授课形式也和以往不同,“线上+线下”模式教学,每次课程,你需要在 Course 上先自行学习,完成一系列的测试,然后再到课堂上进行更深层次的讨论,课程最后有一个 Final Project。对学生的学习了解得远远不够,虚假学习和肤浅学习大量存在?你是否发现当前的课堂学习存在巨大的“学习错觉”和“学习陷阱”?你是否发现深度学习已经成为课堂改革的一大刚