原式=lim[tanx(1-cosx)]/x^3
=lim(x · ½x²)/x^3
=½
用到的等价无穷小量替换有:x→0时
tanx~x
1-cosx~½x²
e^x-1~x
x->0
分子
tanx = x+(1/3)x^3 +o(x^3)
sinx = x-(1/6)x^3 +o(x^3)
tanx - sinx =(1/2)x^3 +o(x^3)
分母
e^x -1 = x+o(x)
x^2.(e^x -1) =x^3 +o(x^3)
lim(x->0) (tanx - sinx) /[x^2.(e^x -1) ]
=lim(x->0) (1/2)x^3 /x^3
=1/2