解: 设M(x,y)
∵M在BC上,
∴y*(-2)-m(x-2)=0,∴y=(2-x)m/2
且BM<=2AM,即(x-2)²+y²<=4[(x-1)²+y²]
化简得 12x²-16x+3(2-x)²m²>=0
(12+3m²)x²-(16+12m²)x+12m²>=0 ①
在0<=x<=2恒成立
∵0<16+12m²)/2(12+3m²)=2-32/2(12+3m²)<2
即对称轴在0<=x<=2之间
∴要使①在0<=x<=2恒成立
Δ=2*16*12m²+16²-4*12*12m²<0
解得 m<-2√3/3 或m>2√3/3