三角函数:sina+sinb=1⼀4,cosa+cosb=1⼀3,求tan(a+b)的值。

2025-05-14 15:43:46
推荐回答(3个)
回答(1):

解:sina+sinb=1/4=2[sin(a+b)/2][cos(a-b)/2]
cosa+cosb=1/3=2[cos(a+b)/2][cos(a-b)/2]
两式相除得:tan(a+b)/2=3/4,然后用两倍角正切公式,则:tan(a+b)=2*3/4/(1-(3/4)^2)=24/7, 希望能帮到你,望采纳谢谢。

回答(2):

回答(3):

sina+sinb=2sin(a+b)/2cos(a-b)/2=1/4.(1)
cosa+cosb=2cos(a+b)/2cos(a-b)/2=1/3.(2)
(1)式/(2)式得:
tan(a+b)/2 = 3/4
sin(a+b)=(2tan(a+b)/2)/(1+tan^2((a+b)/2))=24/25,
cos(a+b)=7/25
(1)式*(2)式得:
sina*cosa+sina*cosb+cosa*sinb+sinb*cosb
=(sin2a+sin2b)/2+sin(a+b)
=sin(a+b)cos(a-b)+sin(a+b)
=(cos(a-b)+1)*24/25=1/12
cos(a-b)=-263/288
tan2A=2tanA/(1-tanA^2)
tan(a+b)/2 = 3/4
tan(a+b) = [2*tan(a+b)/2]/(1-tan^2(a+b)/2)
=(3/4)/(1-9/16)
=(3/4)/(7/16)
=3/4*16/7
=12/7