(1)∵数列{
}是公差为2的等差数列,且a1=1.1 an
∴
=1+2(n-1),解得an=1 an
.1 2n?1
(2)∵an?an+1=
=1 (2n?1)(2n+1)
(1 2
?1 2n?1
).1 2n+1
∴数列{an?an+1}的前n项和Tn=
[(1?1 2
)+(1 3
?1 3
)+…+(1 5
?1 2n?1
)]1 2n+1
=
(1?1 2
)1 2n+1
=
.n 2n+1