cos(x-π/4)=cosxcosπ/4+sinxsinπ/4
=√2/2cosx+√2/2sinx
=√2/2(cosx+sinx)
又cosx=1-x^2/2+x^4/4!-...
sinx=x-x^3/3!+x^5/5!-...
所以√2/2(cosx+sinx)
=√2/2(1+x-x^2/2!-x^3/3!+x^4/4!+x^5/5!-...)
有什么问题可以提问~如果有帮助望采纳
cos[x-(π/4)]=cosxcos(π/4)+sinxsin(π/4)=(√2/2)[Σ(-1)^n x^(2n)/(2n)!+Σ(-1)^n x^(2n+1)/(2n+1)!]求和从0到+∞