F1′+F浮=G0+G,------①
F2′=G0+G,------------②
F1=F1′,F2=F2′
由①②解得:F浮=F2-F1=1.5×105N-1.2×105N=3×104N;
(2)以动滑轮A和被提升的重物为研究对象,被提升的重物在水中匀速上升时,受力分析如图3所示,被提升的重物被拉出水面后匀速上升时,受力分析如图4所示.
3T1=GA+G-F浮,----------③
3T2=GA+G,---------------④
③ ④ 得:3T1 3T2 =GA+G-F浮 GA+G以杠杆BFO为研究对象,两个状态的受力分析如图5和图6所示.
3T´1×BO=N1×FO,-------------⑤
3T´2×BO=N2×FO,-----------⑥
T1=T´1,T2=T´2
⑤ ⑥ 得:3T′1 3T′2 =3T1 3T2 =N1 N2 =13 25
所以:3T1 3T2 =GA+G-F浮 GA+G =13 25 ,2.5×103N+G-3×104N 2.5×103N+G =13 25
解得:G=6×104N;
η1=W有1 W总1 =(G-F浮)h T1S =G-F浮 3T1 ----------------⑦
η2=W有2 W总2 =Gh T2S =G 3T2 -------------------⑧
⑦ ⑧ 得:η1 η2 =G-F浮 3T1 ×3T2 G =6×104N-3×104N 6×104N ×25 13 =25 26
(3)重物被拉出水面后,卷扬机牵引力的功率:
P=T2×3v=GA+G 3 ×3v
=(GA+G)v=(2.5×103N+6×104N)×0.2m/s=1.25×104W.
(1)F浮=ρ水gV排=ρ水gV=103kg/m3×10N/Kg×0.6m3=6×103N,
G车=P1S=1.8×107Pa×S,-------------①
G车+G物-F浮=P2S,
G车+G物-6×103N=2.4×107Pa×S,----------------②
G车+G物=P3S=2.6×107Pa×S,-----------------③
由①②③得:G物=2.4×104N,
η=W有 W总 =G物-F浮 G物-F浮+G动 ,
即:90%=2.4×104N-6×103N 2.4×104N-6×103N+G动 ,
解得:
G动=2×103N,
(2)
由杠杆平衡条件可得:
N1L1=(G物-F浮+G动)L2,
N2L1=(G物+G动)L2,
∴N1 N2 =G物-F浮+G动 G物+G动 =2.4×104N-6×103N+2×103N 2.4×104N+2×103N =10 13 ,
(3)P=W t =105J 10s =104W
∵P=F牵v绳=1 3 ×(G物-F浮+G动)×3v物
∴v物=P G物-F浮+G动 =104W 2.4×104N-6×103N+2×103N =0.5m/s.
答:(1)动滑轮的重力为2×103N;
(2)支撑力N1和N2之比为11:13;
(3)重物出水前匀速上升的速度为0.5m/s.
http://www.jyeoo.com/physics/ques/detail/a9392308-c45b-42f3-b2ab-8474900db3c5