解:∵∠ABC的平分线BP与△ACB的外角∠ACD的平分线CP相交于点P∴∠DCP=1/2∠ACD,∠PBC=1/2∠ABC,∵∠DCP是△BCP的外角,∴∠P=∠PDC-∠PBC=1/2∠ACD-1/2∠ABC=1/2(∠A+∠ABC)-1/2∠ABC=1/2∠A+12∠ABC-1/2∠ABC=1/2∠A=1/2×80°=40°.
解:∵∠4=∠2+∠P
2∠4=2∠2+∠A
∴∠A=2∠P=80°
∴∠P=40°
(2)*22(2)-(1)得2< P =40°
(2)*22
(2)-(1)得2
< P =40°
40度