什么叫夹逼定理?

2025-05-13 07:45:34
推荐回答(4个)
回答(1):

简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个就是夹逼定理。

英文原名Squeeze Theorem,也称夹逼准则、夹挤定理、挟挤定理、三明治定理,是判定极限存在的两个准则之一。  

一.

如果数列{Xn},{Yn}及{Zn}满足下列条件:   

(1)从某项起,即当n>n。,其中n。∈N,有Yn≤Xn≤Zn (n=1,2,3,……),   

(2)当n→∞,limYn =a;当n→∞ ,limZn =a,   

那么,数列{Xn}的极限存在,且当 n→∞,limXn =a。   

二.

F(x)与G(x)在Xo连续且存在相同的极限A,即x→Xo时, limF(x)=limG(x)=A

则若有函数f(x)在Xo的某邻域内恒有

F(x)≤f(x)≤G(x)

则当X趋近Xo,有limF(x)≤limf(x)≤limG(x)

即 A≤limf(x)≤A

故 limf(Xo)=A

简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个就是夹逼定理。

扩展资料:

应用:

1.设{Xn},{Zn}为收敛数列,且:当n趋于无穷大时,数列{Xn},{Zn}的极限均为:a。

若存在N,使得当n>N时,都有Xn≤Yn≤Zn,则数列{Yn}收敛,且极限为a。

2.夹逼准则适用于求解无法直接用极限运算法则求极限的函数极限,间接通过求得F(x)和G(x)的极限来确定f(x)的极限。

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

夹逼定理:

(1)当  (这是  的去心邻域,有个符号打不出)时,有  成立

(2)  ,那么,f(x)极限存在,且等于A不但能证明极限存在,还可以求极限,主要用放缩法。

参考资料:百度百科--夹逼定理

回答(2):

夹逼定理英文原名Squeeze Theorem。也称两边夹定理、夹逼准则、夹挤定理、挟挤定理、三明治定理,是判定极限存在的两个准则之一,是函数极限的定理。

一.如果数列{Xn},{Yn}及{Zn}满足下列条件:

(1)当n>N0时,其中N0∈N*,有Yn≤Xn≤Zn,

(2){Yn}、{Zn}有相同的极限a,设-∞

则,数列{Xn}的极限存在,且当 n→+∞,limXn =a。

证明:因为limYn=a,limZn=a,所以根据数列极限的定义,对于任意给定的正数ε,存在正整数N1、N2,当n>N1时 ,有〡Yn-a∣﹤ε,当n>N2时,有∣Zn-a∣﹤ε。

现在取N=max{No,N1,N2},则当n>N时,∣Yn-a∣<ε、∣Zn-a∣<ε同时成立,且Yn≤Xn≤Zn,即a-ε

limXn=a

扩展资料

对于夹逼定理,最基本的放缩手段就是“分母越小,分数越大;分母越大,分数越小”,而对于n项和式放缩的目标,是把分母变成一样的,方便合并,有的题目,处理完分母之后,立刻可以合并,按照求通项法处理,但是有的题目不行,这时候就要考虑使用定积分定义进行求解。

对于n项乘积,有三种处理方法,一个是甩锅:用对数恒等式转化成n项相加,用加法的方法去解决;一个是连锁效应,这里面有裂项法和乘因子法(点火法);最后一个就是利用乘除法中的放缩(大于1去掉是缩小,小于1去掉是放大)来处理。

参考资料来源:百度百科-夹逼定理

回答(3):

夹逼定理英文原名Squeeze Theorem。也称两边夹定理、夹逼准则、夹挤定理、挟挤定理、三明治定理,是判定极限存在的两个准则之一。

回答(4):