x-y+1⼀2siny=0所确认的隐函数的二阶导数 y✀=2⼀(2-cosy)

2025-05-24 06:58:49
推荐回答(2个)
回答(1):

简单计算一下即可,答案如图所示

回答(2):

x-y+1/2siny=0 两边对x求导得
1-y'+1/2cosy*y'=0
y'=2/(2-cosy)
y''=dy'/dx
=(dy'/dy)*(dy/dx)
=[-2/(2-cosy)²]*siny*2/(2-cosy)
=-4siny/(2-cosy)³