6分之1
原式 = lim -3[√(1-x^2/9)-1]/(sinx)^2分子分母分别等价无穷小代换得原式 = lim -3[-(1/2)(x^2/9)]/x^2 = 1/6或 分子分母同乘以 3+√(9-x^2), 得原式 = lim x^2/{(sinx)^2[3+√(9-x^2)]} = lim 1/[3+√(9-x^2)] = 1/6
😁
分子有理化,再利用重要极限,I=lim(x→0)[9-(9-x^2)]/{(sinx)^2*[3+√(9-x^2)]}=lim(x→0)[x^2]/{(sinx)^2*[3+√(9-x^2)]}=lim(x→0)1/[3+√(9-x^2)]=1/6