已知函数f(x)=-根号3sin^2x+sinxcosx (1)求f((23π)⼀6) (2)设x属于(0,π),求f(x)的最大值和最小值

2025-05-21 06:17:08
推荐回答(3个)
回答(1):

f(x)=-根号3sin^2x+sinxcosx
=-√3/2(1-cos2x)+1/2sin2x
=√3/2cos2x+1/2sin2x-√3/2
=sin(2x+π/3)-√3/2
(1)f((23π)/6)=-√3/2
(2)因为x属于(0,π)所以
π/3<2x+π/3<7π/3
所以
最大值=1--√3/2
最小值=-1-√3/2

回答(2):

23π/6=4π-π/6
sin(23π/6)=-sinπ/6=-1/2 cos(23π/6)=cosπ/6=√3/2
∴f(23π/6)=√3sin²(π/6)-sinπ/6cosπ/6=√3/4-√3/4=0

f(x)=√3sin²x+sinxcosx=√3/2(2sin²x-1)+1/2+1/2 (2sinxcos)
=√3/2(cos2x)+1/2sin2x+1/2
=sinπ/3cos2x+cosπ/3sin2x+1/2
=sin(2x+π/3)+1/2
∵0<x<π
∴0<2x<2π
π/3<2x+π/3<2π+π/3
∴-1≤sin(2x+π/3)≤1
f(x)的最大值是3/2,最小值是-1/2

回答(3):

f(x)=-根号3sin^2x+sinxcosx
=√3/2(1-2sin^2x)+1/2 (2sinxcosx)-√3/2
=√3/2cos2x+1/2sin2x-√3/2
=sin(2x+π/3)-√3/2
1、f[(23π)/6]=sin(2X23π/6+π/3)-√3/2
=sin8π-√3/2
=-√3/2
2、当0即:π/3当sin(2x+π/3)=-1时有最小值为:-√3/2
当sin(2x+π/3)=1时有最大值为:1-√3/2