解答:证明:(1)∵AB=AC,
∴∠ACB=∠ABC,
∵四边形ABCD内接于圆,
∴∠EDC=∠ABC,
∵∠ADB=∠ACB,∠ADB=∠FDE,
∴∠FDE=∠ACB=∠ABC,
∴∠FDE=∠EDC,
即DE平分∠CDF;
(2)∵∠EDC+∠ADC=180°,∠ECA+∠ACB=180°,∠ACB=∠EDC,
∴∠ADC=∠ACE,
又∵∠BAC=∠CAD,
∴△ADC∽△ACE,
∴
=AD AC
,AC AE
∴AC2=AD×AE,
∵AB=AC,
∴AB2=AD?AE.