证明:∵CF⊥BE,∴∠BFC=90°,又∵∠BCE=90°,∠CBF=∠EBC,∴△BFC∽△BCE∴ BC BE = BF BC ,即BC2=BE×BF,∵∠ACB=90°,CD⊥AB,∴BC2=BD×BA,∴BE×BF=BD×BA∴ BE BD = BA BF ,又∵∠DBF=∠EBA∴△BFD∽△BAE,∴ EB AE = BD DF ,即EB?DF=AE?BD.